Exercice 1

Soit E un espace vectoriel, soient F et G deux sous espaces vectoriels de E et soient $\mathcal{F} = (f_1, f_2, \dots, f_p)$ une base de F et $\mathcal{G} = (g_1, g_2, \dots, g_r)$ une base de G.

Montrer que F et G sont supplémentaires dans E si et seulement si $(f_1, f_2, \ldots, f_p, g_1, g_2, \ldots, g_r)$ est une base de E.

Exercice 2

Soit E un \mathbb{R} -espace vectoriel de dimension finie et p un projecteur de E, on pose $q = \mathrm{Id} - p$.

- 1) Montrer que q est un projecteur.
- 2) Montrer que $E = \text{Ker}(p) \oplus \text{Ker}(q)$.
- 3) Montrer que Ker(p) = Im(q) et Ker(q) = Im(p).

Montrer dans chaque cas que F et G sont supplémentaires dans E:

- a) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3; x + y z = 0\}$ et G = Vect((1, 2, -1)).
- b) $E = \mathbb{R}_2[X], F = \{P \in \mathbb{R}_2[X], P(0) = P(1)\} \text{ et } G = \text{Vect } (X^2).$
- c) $E = \mathcal{M}_n(\mathbb{R})$, $F = \mathcal{S}_n(\mathbb{R})$, $G = \mathcal{A}_n(\mathbb{R} \text{ (où } \mathcal{S}_n(\mathbb{R}) \text{ et } \mathcal{A}_n(\mathbb{R}) \text{ sont respectivement l'ensemble des matrices symétriques et antisymétriques d'ordre <math>n$ à coefficients réels).
- d) $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, $F = \mathcal{P}(\mathbb{R}, \mathbb{R})$ et $G = \mathcal{I}(\mathbb{R}, \mathbb{R})$ (où $\mathcal{F}(\mathbb{R}, \mathbb{R})$, $F = \mathcal{P}(\mathbb{R}, \mathbb{R})$ et $G = \mathcal{I}(\mathbb{R}, \mathbb{R})$ sont respectivement : l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} , l'ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} , et l'ensemble des fonctions impaires de \mathbb{R} dans \mathbb{R}).

On se place dans l'espace vectoriel $E = \mathbb{R}^3$

- 1) Montrer que $E_1 = \{(a, a, a) \mid a \in \mathbb{R}\} = \text{Vect}((1, 1, 1))$ et $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ sont supplémentaires dans \mathbb{R}^3
- 2) On considère la projection sur E_2 parallèlement à E_1 , c'est à dire le projecteur $p \in \mathcal{L}(\mathbb{R}^3)$ tel que $\mathrm{Im}(p) = E_2$ et $\mathrm{Ker}(p) = E_1$. Déterminer la matrice A de p dans la base canonique de \mathbb{R}^3 .
- 3) Montrer qu'il existe une matrice inversible $P \in \mathcal{M}_3(\mathbb{R})$ et son inverse P^{-1} telles que $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Soit $a \in \mathbb{R}$. On considère la matrice $A = \begin{pmatrix} a & -a \\ 1 & -1 \end{pmatrix}$

- 1) Pour quelle(s) valeur(s) de a la matrice A est-elle la matrice d'un projecteur?
- 2) Déterminer alors les sous espaces caractéristiques Ker(A) et Im(A) de ce projecteur.
- 3) Déterminer une matrice inversible $P \in \mathcal{M}_2(\mathbb{R})$ et son inverse P^{-1} telles que $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Soit E un \mathbb{R} -espace vectoriel de dimension finie, et soit $u \in \mathcal{L}(E)$.

- 1) Montrer qu'il y a équivalence entre les trois propositions suivantes :
 - (i) $Ker(u) = Ker(u^2)$
 - (ii) $\operatorname{Im}(u) = \operatorname{Im}(u^2)$
 - (iii) $E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$

Indication: on pourra montrer $(i) \Leftrightarrow (ii), (i) \Rightarrow (iii)$ et $(iii) \Rightarrow (ii)$

2) Un endomorphisme vérifiant les propositions ci-dessus est-il nécessairement un projecteur?

Soit E un \mathbb{R} -espace vectoriel de dimension finie n et soient f et g deux endomorphismes de E.

- 1) Montrer que $rg(f+g) \le rg(f) + rg(g)$.
- 2) Montrer que $\operatorname{rg}(f+g)=\operatorname{rg}(f)+\operatorname{rg}(g)$ si et seulement si $\operatorname{Im} f\cap \operatorname{Im} g=\{0\}$ et $\operatorname{Ker} f+\operatorname{Ker} g=E$

Soit $E = \mathbb{R}_n[X]$ avec $n \geq 2$.

- 1) $F = \{P \in \mathbb{R}_n[X] \mid P(1) = 0\}$. Vérifier que F est un sous-espace vectoriel strict de E puis déterminer un supplémentaire de F dans E.
- 2) Même question avec $F = \{P \in \mathbb{R}_n[X] \mid P(1) = P(2) = 0.$
- 3) Généraliser à $F = \{P \in \mathbb{R}_n[X] \mid P(x_1) = P(x_2) = \dots = P(x_k) = 0\}$ avec $1 \le k \le n$ et $x_1 < x_2 < \dots < x_k$ des réels distincts.

Soit E un \mathbb{R} -espace vectoriel, F un sous-espace vectoriel de E, et q un projecteur de E. Montrer que F est stable par q si et seulement si $F = (F \cap \operatorname{Ker}(q)) \oplus (F \cap \operatorname{Im}(q))$.

Soit E un \mathbb{R} -espace vectoriel, p un projecteur de E et u un endomorphisme de E. Montrer que p et u commutent si et seulement si $\mathrm{Ker}(p)$ et $\mathrm{Im}(p)$ sont stables par u.

* * Exercice 11 -

Soit $E = \mathcal{C}([0,1],R)$ l'ensemble des fonctions continues de [0,1] dans \mathbb{R} . On admet que E est un \mathbb{R} -espace vectoriel (de dimension infinie). Soit $F = \left\{ f \in E \,\middle|\, \int_0^1 f(t) \,\mathrm{d}t = 0 \right\}$ et $G = \left\{ f \in E \,\middle|\, f \text{ est constante} \right\}$.

- 1) Montrer que F et G sont supplémentaires dans E.
- 2) Soit p la projection sur F parallèlement à G. Que vaut p(f) pour $f \in E$?

Exercice 12

Soient E un \mathbb{R} -espace vectoriel de dimension finie et $p, q \in \mathcal{L}(E)$ deux projecteurs.

- 1) Montrer que p+q est un projecteur si et seulement si $p\circ q=q\circ p=0$
- 2) Montrer que si p+q est un projecteur, $\operatorname{Im}(p+q)=\operatorname{Im}(p)\oplus\operatorname{Im}(q)$ et $\operatorname{Ker}(p+q)=\operatorname{Ker}(p)\cap\operatorname{Ker}(q)$

* * * * Exercice 13

Soient E et F deux \mathbb{R} -espaces vectoriels de dimension finie et soient $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,E)$ tels que $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

- 1) Montrer que Ker(f) et Im(g) sont en somme directe.
- 2) Montrer que Ker(f) et Im(g) sont supplémentaires dans E.
- 3) On pose $E = \mathbb{R}_n[x]$, $F = \mathbb{R}_{n-1}[x]$. On pose

Vérifier que f et g satisfont les conditions de l'énoncé.

* * * Exercice 14 -

Soit E un \mathbb{R} -espace vectoriel de dimension finie.

1) Soit $p \in \mathcal{L}(E)$ un projecteur. Montrer que $\operatorname{rg}(p) = \operatorname{tr}(p)$.

2) Montrer par récurrence que si F_1, F_2, \ldots, F_n est une famille de sous espaces vectoriels de E on a

$$\dim(F_1 + F_2 + \dots + F_n) \le \dim(F_1) + \dim(F_2) + \dots + \dim(F_n)$$

avec égalité si et seulement si F_1, F_2, \dots, F_n sont en somme directe.

3) Soit p_1, p_2, \ldots, p_n une famille de projecteurs. Montrer que $p = p_1 + p_2 + \cdots + p_n$ est un projecteur si et seulement si $\forall (i,j) \in [1,n]^2, i \neq j, \ p_i \circ p_j = 0.$

Indication: commencer par montrer que si p est un projecteur alors $\operatorname{Im}(p) = \operatorname{Im}(p_1) \oplus \operatorname{Im}(p_2) \oplus \cdots \oplus \operatorname{Im}(p_n)$.

Le coin des Khûbes

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer que les trois assertions suivantes sont équivalentes :

- (i) Ker(u) = Im(u)
- (ii) $u^2 = 0$ et $\dim(\operatorname{Ker}(u)) = \dim(\operatorname{Im}(u)) = \dim(E)/2$
- (iii) $u^2 = 0$ et il existe un endomorphisme v tel que $u \circ v + v \circ u = \mathrm{Id}_E$.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice. On dit qu'une matrice $A' \in \mathcal{M}_n(\mathbb{R})$ est un pseudo-inverse de A lorsque les trois égalités suivantes sont satisfaites :

$$AA' = A'A$$
 (i) , $A = AA'A$ (ii) , $A' = A'AA'$ (iii)

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ et a l'endomorphisme de \mathbb{R}^n canoniquement associé.

- 1) Supposons que A admette un pseudo-inverse. Montrer qu'alors $rg(a) = rg(a^2)$.
- 2) Réciproquement, supposons dans cette question que $rg(a) = rg(a^2)$. On note r le rang de a.
 - a) Montrer que $\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$
 - b) Montrer qu'il existe $B \in \mathcal{M}_r(\mathbb{R})$ avec B inversible et $P \in \mathcal{M}_n(\mathbb{R})$ inversible telles que $A = P \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$
 - c) Montrer que A admet au moins un pseudo-inverse.
- 3) On suppose que A admet un pseudo inverse A' et on note a' l'endomorphisme canoniquement associé à A'. On garde les matrices B et P de la question précédente.
 - a) Montrer que Ker(a) et Im(a) sont stables par a' et montrer qu'il existe $D \in \mathcal{M}_r(\mathbb{R})$ telle que $A' = P\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$.
 - b) Montrer que aa' est un projecteur dont on précisera le noyau et l'image en fonction de ceux de a. Préciser ce que vaut $P^{-1}(AA')P$.
 - c) Montrer que A admet au plus un pseudo-inverse.

(ENS 2025) Soit E un espace vectoriel de dimension finie. Soient F, G des sous-espaces vectoriels de E. Pour simplifier les notations on node d_H la dimension d'un sous-espace vectoriel H de E.

1) En considérant l'application

$$\begin{array}{cccc} u & : & F \times G & \to & F + G \\ & (x,y) & \mapsto & x+y \end{array}$$

montrer que $d_{F+G} + d_{F \cap G} = d_F + d_G$. On pourra admettre que $\dim(F \times G) = \dim(F) + \dim(G)$.

- 2) Montrer que $d_{F+G}^2 + d_{F\cap G}^2 d_F^2 d_G^2 = 2(d_G d_{F\cap G})(d_F d_{F\cap G})$.
- 3) Montrer que $d_{F+G}^2 + d_{F\cap G}^2 \geqslant d_F^2 + d_G^2$ et étudier les cas d'égalité.
- 4) Soit $\alpha > 1$ un réel. Montrer que $d_{F+G}^{\alpha} + d_{F\cap G}^{\alpha} \geqslant d_F^{\alpha} + d_G^{\alpha}$ et étudier le cas d'égalité. Indication : on pourra considérer la fonction $f(x) = (x + d_G - d_{F\cap G})^{\alpha} + d_{F\cap G}^{\alpha} - x^{\alpha} - d_G^{\alpha}$.

